
PyCounters Documentation
Release 0.6

Boaz Leskes

June 16, 2013

CONTENTS

1 Typical use cases 3

2 Some simple examples 5
2.1 Measuring execution frequency . 5
2.2 Measuring average executing time . 5
2.3 Measuring custom event frequency . 5

3 Nice, but is it just that simple? 7

4 Installation 9

5 Cool, but it would be great if ... 11

6 Further reading 13
6.1 Tutorial . 13
6.2 Moving Parts . 21
6.3 Object and function reference . 23
6.4 Utilities reference . 26

Python Module Index 29

i

ii

PyCounters Documentation, Release 0.6

A light weight library to monitor performance and events in production systems.

CONTENTS 1

PyCounters Documentation, Release 0.6

2 CONTENTS

CHAPTER

ONE

TYPICAL USE CASES

• Number of items/requests processed per second.

• Average processing time of items.

• Average waiting time on resources/locks.

• Time spent in DB layer.

• Cache hit/miss rates.

3

PyCounters Documentation, Release 0.6

4 Chapter 1. Typical use cases

CHAPTER

TWO

SOME SIMPLE EXAMPLES

2.1 Measuring execution frequency

Count the number of times per second a function is executed:

from pycounters.shortcuts import frequency

@frequency()
def f():

""" some interesting work like serving a request """
pass

Note: Measurements are done by averaging out a sliding window of 5 minutes. Window size is configurable.

2.2 Measuring average executing time

Count the average wall clock time a function runs:

from pycounters.shortcuts import time

@time()
def f():

""" some interesting work like serving a request """
pass

Note: PyCounter’s shortcut decorator will use the function name in it’s output. This can be configured (see Shortcut
functions).

2.3 Measuring custom event frequency

Counting some event somewhere in your code:

from pycounters.shortcuts import occurrence

def some_code():
...

5

PyCounters Documentation, Release 0.6

if TEST_FOR_SOMETHING:
occurrence("event_name")

...

6 Chapter 2. Some simple examples

CHAPTER

THREE

NICE, BUT IS IT JUST THAT SIMPLE?

Well, almost (see Moving Parts for a complete answer.) To let the counters report their statistics you need to initialize
an instance of the LogReporter:

import pycounters
import logging

reporter=pycounters.reporters.LogReporter(logging.getLogger("counters"))
pycounters.register_reporter(reporter)
pycounters.start_auto_reporting(seconds=300)

Once adding this code, all the counters will periodically report their stats to a log named “counters”. Here is an
example:

2011-06-03 18:12:44,881 | 9130|1286490432 | counters | INFO | posting 0.589342236519
2011-06-03 18:12:44,888 | 9130|1286490432 | counters | INFO | search 1.47849245866

Note: The above logs indicate that the search function took 1.48 seconds on average to execute. The posting function
took only 0.59 seconds.

7

PyCounters Documentation, Release 0.6

8 Chapter 3. Nice, but is it just that simple?

CHAPTER

FOUR

INSTALLATION

Easy install PyCounters to get it up and running:

easy_install pycounters

Take a look at the Tutorial for more details.

9

PyCounters Documentation, Release 0.6

10 Chapter 4. Installation

CHAPTER

FIVE

COOL, BUT IT WOULD BE GREAT IF ...

PyCounters is in it’s early stages. If you have any ideas for improvements, features which are aboslutely a must or
things you feel are outright stupid - I’d love to hear. Make ticket on https://bitbucket.org/bleskes/pycounters/issues .

Here is what I have in mind so far:

• Django integration (I’m currently working on this)

• Geckoboard output

Of course, you are more then welcome to browse and/or fork the code: https://bitbucket.org/bleskes/pycounters

11

https://bitbucket.org/bleskes/pycounters/issues
http://www.djangoproject.com/
http://www.geckoboard.com
https://bitbucket.org/bleskes/pycounters

PyCounters Documentation, Release 0.6

12 Chapter 5. Cool, but it would be great if ...

CHAPTER

SIX

FURTHER READING

6.1 Tutorial

6.1.1 Installing pycounters

PyCounters is pure python. All you need is to run easy_install (or pip):

easy_install pycounters

Of course, you can always checkout the code from BitBucket on https://bitbucket.org/bleskes/pycounters

6.1.2 Introduction

PyCounters is a library to help you collect interesting metrics from production code. As an case study for this tutorial,
we will use a simple Python-based server (taken from the python docs):

import SocketServer

class MyTCPHandler(SocketServer.BaseRequestHandler):
"""
The RequestHandler class for our server.

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

def handle(self):
self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data
just send back the same data, but upper-cased
self.request.send(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you

13

https://bitbucket.org/bleskes/pycounters
http://docs.python.org/library/socketserver.html#socketserver-tcpserver-example

PyCounters Documentation, Release 0.6

interrupt the program with Ctrl-C
server.serve_forever()

6.1.3 Step 1 - Adding Events

For this basic server, we will add events to report the following metrics:

• Number of requests per second

• Average time for handling a request

Both of these metrics are connected to the handle method of the MyTCPHandler class in the example. The number of
requests per second the server serves is exactly the number of times the handle() method is called. The average time
for handling a request is exactly the average execution time of handle()

Both of these metrics are measure by decorating handle() the shortcut decorators frequency and time:

import SocketServer
from pycounters import shortcuts

class MyTCPHandler(SocketServer.BaseRequestHandler):
...

@shortcuts.time("requests_time")
@shortcuts.frequency("requests_frequency")
def handle(self):

self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data
just send back the same data, but upper-cased
self.request.send(self.data.upper())

Note:

• Every decorator is given a name (“requests_time” and “requests_frequency”). These names will come back in
the report generated by PyCounters. More on this in the next section.

• The shortcut decorators actually do two things - report events and add counters for them. For now, it’s OK but
you might want to separate the two. More on this later in the tutorial

6.1.4 Step 2 - Reporting

Now that the metrics are being collected, they need to be reported. This is the job of the reporters. In this example,
we’ll save a report every 5 minutes to a JSON file at /tmp/server.counters.json (check out the Reporters section for
other options). To do so, create an instance of JSONFileReporter when the server starts:

import SocketServer
from pycounters import shortcuts, reporters, start_auto_reporting, register_reporter

....

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
JSONFile = "/tmp/server.counters.json"

14 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

reporter = reporters.JSONFileReporter(output_file=JSONFile)
register_reporter(reporter)

start_auto_reporting()

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

Note: To make pycounters periodically output a report you must call start_auto_reporting()

By default auto reports are generated every 5 minutes (change that by using the seconds parameter of
start_auto_reporting()). After five minutes the reporter will save it’s report. Here is an example of the contest of
/tmp/server.counters.json:

{"requests_time": 0.00039249658584594727, "requests_frequency": 0.014266581369872909}

6.1.5 Step 3 - Counters and reporting events without a decorator

Average request time and request frequency were both nicely measured by decorating MyTCPHandler::handle(). Some
metrics do not fit as nicely into the decorator model.

The server in our example receives a string from the a client and returns it upper_cased. Say we want to measure the
average number of characters the server processes. To achieve this we can use another shortcut function value:

import SocketServer
from pycounters import shortcuts

class MyTCPHandler(SocketServer.BaseRequestHandler):
...

@shortcuts.time("requests_time")
@shortcuts.frequency("requests_frequency")
def handle(self):

self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data

measure the average length of data
shortcuts.value("requests_data_len",len(self.data))

just send back the same data, but upper-cased
self.request.send(self.data.upper())

Until now, the shortcut decorators and functions were perfect for what we wanted to do. Naturally, this is not always
the case. Before going on, it is handy to explain more about these shortcuts and how PyCounters work (see Moving
Parts for more about this).

PyCounters is built of three main building blocks:

• Events - to reports values and occurrences in your code (in the example: incoming request, the time it took to
process them and the number of bytes the processed).

6.1. Tutorial 15

PyCounters Documentation, Release 0.6

• Counters - to capture events and analyse them (in the example: measuring requests per second, averaging request
processing time and averaging the number of bytes processed per request).

• Reporters - to periodically generate a report of all active counters.

PyCounters’ shortcuts will both report events and create a counter to analyse it. Every shortcut has a default
counter type but you can override it (see Shortcuts). For example, say we wanted to measure the total num-
ber of bytes the server has processed rather than the average. To achieve this, the “requests_data_len” counter
needs to be changed to TotalCounter. The easiest way to achieve this is to add a parameter to the shortcut
shortcuts.value("requests_data_len",len(data),auto_add_counter=TotalCounter)
(don’t forget to change your imports too). However, we will go another way about it.

PyCounter’s event reporting is very light weight. It practically does nothing if no counter is defined to capture those
events. Because of this, it is a good idea to report all important events through the code and choose later what you
exactly want analyzed. To do this we must separate event reporting from the definition of counters.

Note: When you create a counter, it will by default listen to one event, named exactly as the counter’s name. However,
if the events parameter is passed to a counter at initialization, it will listen only to the specified events.

Note: This approach also means you can analyze things differently on a single thread, by installing thread specific
counters. For example, trace a specific request more heavily due to some debug flag. Thread specific counters are not
currently available but will be in the future.

Reporting an event without defining a counter is done by using one of the functions described under Event reporting .
Since we want to report a value, we will use pycounters.report_value():

import SocketServer
from pycounters import shortcuts,reporters,report_value

class MyTCPHandler(SocketServer.BaseRequestHandler):
...

@shortcuts.time("requests_time")
@shortcuts.frequency("requests_frequency")
def handle(self):

self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data

measure the average length of data
report_value("requests_data_len",len(self.data))

just send back the same data, but upper-cased
self.request.send(self.data.upper())

To add the TotalCounter counter, we change the initialization part of the code:

import SocketServer
from pycounters import shortcuts, reporters, report_value,counters, register_counter, start_auto_reporting, register_reporter

....

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
JSONFile = "/tmp/server.counters.json"

16 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

data_len_counter = counters.TotalCounter("requests_data_len") # create the counter
register_counter(data_len_counter) # register it, so it will start processing events

reporter = reporters.JSONFileReporter(output_file=JSONFile)
register_reporter(reporter)

start_auto_reporting()

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

6.1.6 Step 4 - A complete example

Here is the complete code with all the changes so far (also available at the PyCounters repository):

import SocketServer
from pycounters import shortcuts, reporters, register_counter, counters, report_value, register_reporter, start_auto_reporting

class MyTCPHandler(SocketServer.BaseRequestHandler):
"""
The RequestHandler class for our server.

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

@shortcuts.time("requests_time")
@shortcuts.frequency("requests_frequency")
def handle(self):

self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data

measure the average length of data
report_value("requests_data_len",len(self.data))

just send back the same data, but upper-cased
self.request.send(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
JSONFile = "/tmp/server.counters.json"

data_len_counter = counters.TotalCounter("requests_data_len") # create the counter
register_counter(data_len_counter) # register it, so it will start processing events

reporter = reporters.JSONFileReporter(output_file=JSONFile)
register_reporter(reporter)

start_auto_reporting()

6.1. Tutorial 17

https://bitbucket.org/bleskes/pycounters

PyCounters Documentation, Release 0.6

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

6.1.7 Step 5 - More about Events and Counters

In the above example, the MyTCPHandler::handle method is decorated with two short functions: frequency and
time: . This is the easiest way to set up PyCounters to measure things but it has some down sides. First, every
shortcut decorate throws it’s own events. That means that for every execution of the handle method, four events are
sent. That is inefficient. Second, and more importantly, it also means that Counters definition are spread around the
code.

In bigger projects it is better to separate event throwing from counting. For example, we can decorate the handle
function with report_start_end:

@pycounters.report_start_end("request")
def handle(self):

self.request is the TCP socket connected to the client

And define two counters to analyze ‘different’ statistics about this function:

avg_req_time = counters.AverageTimeCounter("requests_time",events=["request"])
register_counter(avg_req_time)

req_per_sec = counters.FrequencyCounter("requests_frequency",events=["request"])
register_counter(req_per_sec)

Note: Multiple counters with different names can be set up to analyze the same event using the events argument in
their constructor.

Doing things this way has a couple of advantages:

• It is conceptually cleaner - you report what happened and measure multiple aspects of it

• It is more flexible - you can easily analyse more things about your code by simply adding counters.

• You can decide at runtime what to measure (by changing registered counters)

6.1.8 Step 6 - Another example of using Events and Counters

In this example we will create a few counters listening to the same events. Let say, we want to get maximum, minimum,
average and sum of values of request data length in 15 minutes window. To achieve this, we need to create 4 counters,
all of them listening to ‘requests_data_len’ event.

import SocketServer
from pycounters import shortcuts, reporters, register_counter, counters, report_value, register_reporter, start_auto_reporting

class MyTCPHandler(SocketServer.BaseRequestHandler):
"""
The RequestHandler class for our server.

18 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

It is instantiated once per connection to the server, and must
override the handle() method to implement communication to the
client.
"""

@shortcuts.time("requests_time")
@shortcuts.frequency("requests_frequency")
def handle(self):

self.request is the TCP socket connected to the client
self.data = self.request.recv(1024).strip()
print "%s wrote:" % self.client_address[0]
print self.data

measure the average length of data
report_value("requests_data_len",len(self.data))

just send back the same data, but upper-cased
self.request.send(self.data.upper())

if __name__ == "__main__":
HOST, PORT = "localhost", 9999
JSONFile = "/tmp/server.counters.json"

data_len_avg_counter = counters.AverageWindowCounter("requests_data_len_avg",\
events=["requests_data_len"], window_size=900) # create the avarage window counter

register_counter(data_len_avg_counter) # register it, so it will start processing events

data_len_total_counter = counters.WindowCounter("requests_data_len_total",\
events=["requests_data_len"], window_size=900) # create the window sum counter

register_counter(data_len_total_counter)

data_len_max_counter = counters.MaxWindowCounter("requests_data_len_max",\
events=["requests_data_len"], window_size=900) # create the max window counter

register_counter(data_len_max_counter)

data_len_min_counter = counters.MinWindowCounter("requests_data_len_min",\
events=["requests_data_len"], window_size=900) # create the min window counter

register_counter(data_len_min_counter)

reporter = reporters.JSONFileReporter(output_file=JSONFile)
register_reporter(reporter)

start_auto_reporting()

Create the server, binding to localhost on port 9999
server = SocketServer.TCPServer((HOST, PORT), MyTCPHandler)

Activate the server; this will keep running until you
interrupt the program with Ctrl-C
server.serve_forever()

You can change size of window by specifying different window_size parameter when creating a counter.

6.1. Tutorial 19

PyCounters Documentation, Release 0.6

6.1.9 Step 7 - Utilities

In the example so far, we’ve outputted the collected metrics to a JSON file. Using that JSON file, we can easily build
simple tools to report the metrics further. The Utilities reference package contains a set of utilities to help building
such tools.

At the moment, PyCounter comes with a utility to help writing munin plugins. Here is an example of a munin plugin
that taks the JSON report procude by the Tutorial and presents it in the way munin understands:

#!/usr/bin/python

from pycounters.utils.munin import Plugin

config = [
{

"id" : "requests_per_sec",
"global" : {

graph global options: http://munin-monitoring.org/wiki/protocol-config
"title" : "Request Frequency",
"category" : "PyCounters example"

},
"data" : [

{
"counter" : "requests_frequency",
"label" : "requests per second",
"draw" : "LINE2",

}
]

},
{

"id" : "requests_time",
"global" : {

"title" : "Request Average Handling Time",
"category" : "PyCounters example"

},
"data" : [

{
"counter" : "requests_time",
"label" : "Average time per request",
"draw" : "LINE2",

}
]

},
{

"id" : "requests_total_data",
"global" : {

"title" : "Total data processed",
"category" : "PyCounters example"

},
"data" : [

{
"counter" : "requests_data_len",
"label" : "total bytes",
"draw" : "LINE2",

}
]

}

]

20 Chapter 6. Further reading

http://munin-monitoring.org/

PyCounters Documentation, Release 0.6

p = Plugin("/tmp/server.counters.json",config) # initialize the plugin

p.process_cmd() # process munin command and output requested data or config

Try it out (after the server has run for more than 5 minutes and a report was outputted to the JSON file) by running
python munin_plugin config and python munin_plugin .

6.1.10 Step 8 - Multiprocess support

Some application (like a web server) do not run in a single process. Still, you want to collect global metrics like the
ones discussed before in this tutorial.

PyCounters supports aggreating information from multiple running processes. To do so call
pycounters.configure_multi_process_collection() on every process you want to aggregate
data from. The parameters to this method will tell PyCounters what port to use for aggregation and, if running on
multiple servers, which server to collect data on.

6.2 Moving Parts

PyCounters architecture is built around three main concepts:

• Events reporting (start and end of functions, numerical values etc.)

• Counters for collecting the above events and analyzing them (on demand).

• Reporters for outputting the collected statistics.

In short, PyCounters is built to allow adding event reporting with piratically no performance impact. Counters add
some minimal overhead. Only on output does PyCounters do some calculation (every 5 minutes, depending on con-
figuration).

When using PyCounters, consider the following:

• Triggering events is extremely lite weight. All events with no corresponding Counters are ignored.

• Therefore you can add as many events as you want.

• Counters can be registered and unregistered on demand. Only collect what you need.

• Outputting is a relatively rare event - don’t worry about the calculation it does.

6.2.1 Events

PyCounters defines two types of events:

start and end events Start and end events are used to report the start and end of a function or any other block of code.
These events are typically caught by timing counters but anything is possible. Start and end events should be
reported through the report_start() , report_end() or the report_start_end() decorator.

value events These events report a value to the counters. You typically use these to track averages of things but you
can get creative. For example - reporting 1 on a cache hit and 0 on a cache miss to an AverageWindowCounter
will give you the average rate of cache hits. Value events can be reported by using the report_value()
function.

6.2. Moving Parts 21

PyCounters Documentation, Release 0.6

Note: There is no special way in PyCounters to create new event it is enough, to create a counter listening to that
event.

6.2.2 Counters

All the “smartness” of PyCounters is bundled withing a set of Counters. Counters are in charge of intercepting and
interpreting events reported by different parts of the program. As mentioned before, you can register a Counter
when you want to analyze specific events (by default events of identical name, if you need more control, use events
parameter). You do so by using the register_counter() function:

counter = AverageWindowCounter("some_name")
register_counter(counter)

You can also unregister the counter once you don’t need it anymore:

unregister_counter(counter=counter)

or by name:

unregister_counter(name="some_name")

Note: After unregistering the counter all events named “some_name” will be ignored (unless some other counter
listens to them).

Note: You can only register a single counter for any given name.

6.2.3 Reporters

Reporters are used to collect a report from the currently registered Counters. Reporters are not supposed to run often
as that will have a performance impact.

At the moment PyCounters can only output to python logs and JSON files. For example, to output to logs, create
an instance of LogReporter . You can then manually output reports (using output_report) or turn on auto
reporting (using start_auto_reporting .)

reporter=pycounters.reporters.LogReporter(logging.getLogger("counters"))
pycounters.register_reporter(reporter)
#... some where later
pycounters.output_report()

6.2.4 Shortcuts

These are functions which both report events and auto add the most common Counter for them. See Shortcut functions
for more details and Some simple examples in the main documentation page for usage examples.

22 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

6.3 Object and function reference

6.3.1 Event reporting

pycounters.report_start(name)
reports an event’s start. NOTE: you must fire off a corresponding event end with report_end

pycounters.report_end(name)
reports an event’s end. NOTE: you must have fired off a corresponding event start with report_start

pycounters.report_start_end(name=None)
returns a function decorator and/or context manager which raises start and end events. If name is None events
name is set to the name of the decorated function. In that case report_start_end can not be used as a context
manager.

pycounters.report_value(name, value)
reports a value event to the counters.

6.3.2 Counters

class pycounters.counters.EventCounter(name, events=None)
Counts the number of times an end event has fired.

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.TotalCounter(name, events=None)
Counts the total of events’ values.

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.AverageWindowCounter(*args, **kwargs)
Calculates a running average of arbitrary values

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.AverageTimeCounter(*args, **kwargs)
Counts the average time between start and end events

6.3. Object and function reference 23

PyCounters Documentation, Release 0.6

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.FrequencyCounter(*args, **kwargs)
Use to count the frequency of some occurrences in a sliding window. Occurrences can be reported directly
via a value event (X occurrences has happened now) or via an end event which will be interpreted as a single
occurrence.

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.WindowCounter(*args, **kwargs)
Counts the number of end events in a sliding window

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.MaxWindowCounter(*args, **kwargs)
Counts maximum of events values in window

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

class pycounters.counters.MinWindowCounter(*args, **kwargs)
Counts minimum of events values in window

clear(dump=True)
Clears the stored information

get_value()
gets the value of this counter

report_event(name, property, param)
reports an event to this counter

24 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

6.3.3 Reporters

class pycounters.reporters.LogReporter(output_log=None)
Log based reporter.

class pycounters.reporters.JSONFileReporter(output_file=None)
Reports to a file in a JSON format.

static safe_read(filename)
safely reads a value in a JSON format frome file

static safe_write(value, filename)
safely writes value in a JSON format to file

pycounters.register_reporter(reporter=None)
add a reporter to PyCounters. Registered reporters will output collected metrics

pycounters.unregister_reporter(reporter=None)
remove a reporter from PyCounters.

pycounters.output_report()
Manually cause the current values of all registered counters to be reported.

pycounters.start_auto_reporting(seconds=300)
Start reporting in a background thread. Reporting frequency is set by seconds param.

Multi-process reporting

pycounters.configure_multi_process_collection(collecting_address=[(‘’, 60907), (‘’,
60906)], timeout_in_sec=120, role=2)

configures PyCounters to collect values from multiple processes

Parameters

• collecting_address – a list of (address,port) tuples address of machines and ports data
should be collected on. the extra tuples are used as backup in case the first address/port
combination is (temporarily) unavailable. PyCounters would automatically start using the
preferred address/port when it becomes available again. This behavior is handy when restart-
ing the program and the old port is not yet freed by the OS.

• timeout_in_sec – timeout configuration for connections. Default should be good enough
for pratically everyone.

• role – the role of this process. Leave at the default of AUTO_ROLE for pycounters to
automatically choose a collecting leader.

6.3.4 Registering counters

pycounters.register_counter(counter, throw_if_exists=True)
Register a counter with PyCounters

pycounters.unregister_counter(counter=None, name=None)
Removes a previously registered counter

6.3. Object and function reference 25

PyCounters Documentation, Release 0.6

6.3.5 Shortcut functions

pycounters.shortcuts.count(name=None, auto_add_counter=<class ‘pycoun-
ters.counters.types.EventCounter’>)

A shortcut decorator to count the number times a function is called. Uses the counters.EventCounter
counter by default. If the parameter name is not supplied events are reported under the name of the wrapped
function.

pycounters.shortcuts.frequency(name=None, auto_add_counter=<class ‘pycoun-
ters.counters.types.FrequencyCounter’>)

A shortcut decorator to count the frequency in which a function is called. Uses the
counters.FrequencyCounter counter by default. If the parameter name is not supplied events
are reported under the name of the wrapped function.

pycounters.shortcuts.occurrence(name, auto_add_counter=<class ‘pycoun-
ters.counters.types.FrequencyCounter’>)

A shortcut function reports an occurrence of something. Uses the counters.FrequencyCounter counter
by default.

pycounters.shortcuts.time(name=None, auto_add_counter=<class ‘pycoun-
ters.counters.types.AverageTimeCounter’>)

A shortcut decorator to count the average execution time of a function. Uses the
counters.AverageTimeCounter counter by default. If the parameter name is not supplied events
are reported under the name of the wrapped function.

pycounters.shortcuts.value(name, value, auto_add_counter=<class ‘pycoun-
ters.counters.types.AverageWindowCounter’>)

A shortcut function to report a value of something. Uses the counters.AverageWindowCounter counter
by default.

6.4 Utilities reference

6.4.1 A helper class for Munin plugins

class pycounters.utils.munin.Plugin(json_output_file=None, config=None,
max_file_age_in_seconds=900)

a small utility to write munin plugins based on the output of the JSONFile reporter

example usage (munin_plugin.py) :

#!/usr/bin/python

from pycounters.utils.munin import Plugin

config = [
{

"id" : "graph_id",
"global" : {

graph global options: http://munin-monitoring.org/wiki/protocol-config
"title" : "Title",
"info" : "Some info",
"category" : "PyCounters"

},
"data" : [

{
"counter" : "Somepycountername",
"label" : "A human redable form",

26 Chapter 6. Further reading

PyCounters Documentation, Release 0.6

"draw" : "LINE2"
}
#...

]
}

]

p = Plugin("pycounters_output_file.json", config) # initialize the plugin

p.process_cmd() # process munin command and output requested data or config

output_config(config)
executes the config command

output_data(config)
executes the data command

process_cmd()
process munin command and output requested data or config

6.4. Utilities reference 27

PyCounters Documentation, Release 0.6

28 Chapter 6. Further reading

PYTHON MODULE INDEX

p
pycounters, 23
pycounters.shortcuts, 26

29

	Typical use cases
	Some simple examples
	Measuring execution frequency
	Measuring average executing time
	Measuring custom event frequency

	Nice, but is it just that simple?
	Installation
	Cool, but it would be great if ...
	Further reading
	Tutorial
	Moving Parts
	Object and function reference
	Utilities reference

	Python Module Index

